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Abstract 

Background:  The relationship between traffic-related air pollution (TRAP) and risk factors for 

cardiovascular disease needs to be better understood in order to address the adverse impact of air 

pollution on human health.  

Objective: We examined associations between roadway proximity and traffic exposure zones, as 

markers of TRAP exposure, and metabolic biomarkers for cardiovascular disease risk in a cohort 

of patients undergoing cardiac catheterization. 

Methods:  We performed a cross-sectional study of 2,124 individuals residing in North Carolina, 

USA. Roadway proximity was assessed via distance to primary and secondary roadways, and we 

additionally used residence in traffic exposure zones (TEZs) as a proxy for TRAP. Two 

categories of metabolic outcomes were studied: measures associated with glucose control and 

measures associated with lipid metabolism. Statistical models were adjusted for race, sex, 

smoking, body mass index, and socioeconomic status (SES).  

Results:  An interquartile range (990 m) decrease in distance to roadways was associated with 

higher fasting plasma glucose (β = 2.17 mg/dL; 95% CI: –0.24, 4.59), and the association 

appeared to be limited to women (β = 5.16 mg/dL; 95% CI: 1.48, 8.84 compared with β = 0.14 

mg/dL; 95% CI: –3.04, 3.33 in men). Residence in TEZ 5 (high-speed traffic) and TEZ 6 (stop 

and go traffic), the two traffic zones assumed to have the highest levels of TRAP, was positively 

associated with high density lipoprotein cholesterol (β  = 8.36; 95% CI: –0.15, 16.9 and β  = 

5.98; 95% CI: –3.96, 15.9, for TEZ 5 and 6, respectively).  

Conclusion: Proxy measures of TRAP exposure were associated with intermediate metabolic 

traits associated with cardiovascular disease, including fasting plasma glucose and possibly HDL 

cholesterol.  
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Introduction 

Cardiovascular diseases (CVD) are the primary cause of death in developed nations (Lopez et al. 

2006). Metabolic risk factors such as high-density lipoprotein cholesterol (HDL-C) and total 

cholesterol (TC) are often an important component of multivariate CVD risk prediction models 

(D'Agostino et al. 2001; Kannel et al. 1976; Pencina et al. 2009). Other metabolic risk factors 

may not appear in risk prediction models but remain strong risk factors for CVD such as diabetes 

mellitus, fasting plasma glucose (FPG), insulin resistance (HOMA-IR), low-density lipoprotein 

cholesterol (LDL-C), and triglycerides (TG). These metabolic risk factors may be 

mechanistically linked to cardiovascular disease (Ginsberg 2000), are potentially modifiable, and 

may be affected by environmental factors, like air pollution (Chuang et al. 2011; Chuang et al. 

2010; Thiering et al. 2013). 

Air pollution is an independent risk factor for cardiovascular disease (Brook et al. 2010), and 

specific sources and components may be linked to cardiovascular disease (Peng et al. 2009; 

Zanobetti et al. 2009). Urban and traffic-related air pollution have been associated with coronary 

atherosclerosis and cardiovascular events (Hoffmann et al. 2006; Hoffmann et al. 2007; 

Hoffmann et al. 2009) as well as multiple metabolic risk factors for CVD including diabetes 

(Brook et al. 2008; Kramer et al. 2010; Pearson et al. 2010; Peters 2012), LDL-C (Kelishadi et 

al. 2009), FPG, and HDL-C (Chuang et al. 2010). These metabolic risk factors can be grouped 

into two categories, those related to glucose control and those related to lipid metabolism. 

Measures of glucose control are linked with CVD, with a one unit increase in insulin resistance 

associated with a 5.4% increased risk of CVD (Reddy et al. 2010). Lipids and their metabolism, 

particularly LDL-C, may play a mechanistic role in the pathogenesis of cardiovascular disease 

(Tabas 2011). HDL-C is thought to be protective against CVD, and high levels of blood 
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cholesterol and triglycerides are considered CVD risk factors (Assmann and Gotto 2004). Serum 

lipids are influenced by diet (Mensink and Katan 1992). In addition, exposure to particulate 

matter air pollution has been associated with markers of oxidative damage to serum lipids 

(Møller and Loft 2010).  

The CATHeterization GENetics (CATHGEN) cohort is a large cardiac catheterization cohort 

with a single sampling site, Duke University Medical Center. As such 25% of the cohort comes 

from Durham, Wake, and Orange counties in North Carolina (NC). These are three of the most 

urban counties in NC containing the major cities of Durham, Raleigh, and Chapel Hill 

respectively. Additionally, studies have shown that particulate air pollution in Raleigh, NC is 

correlated with distance to major roadways (Hagler et al. 2009). By utilizing CATHGEN 

participants from this tri-county area we seek to better understand the relationship between 

traffic-related air pollution (TRAP) and metabolic risk factors for CVD. 

Methods 

Study population 

All individuals in this study came from the CATHGEN cohort, a large cardiovascular cohort of 

9,334 adult patients recruited at the Duke University Cardiac Catheterization Clinic from January 

2001 – December 2010. As part of the catheterization procedure a medical fellow or attending 

physician administered an intake Health and Physical (HP) examination at the time of 

catheterization which covered clinical conditions and risk factors. Blood and serum samples 

were collected during study enrollment, and the patient’s medical records associated with the 

catheterization were merged into our secure database. We obtained patient addresses from billing 

records. All participants received and signed informed consent forms prior to enrollment, and the 
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CATHGEN biorepository has been approved by and follows all Duke University Institutional 

Review Board policies (Shah et al. 2010b). None of the samples in CATHGEN were collected 

from catheterizations performed in the context of an acute coronary syndrome as informed 

consent could not be obtained in these cases. 

The Children’s Environmental Health Initiative (http://cehi.snre.umich.edu/) mapped residential 

addresses to geocoded latitude and longitude for the present study. Individuals were considered 

successfully geocoded at the street segment level. Out of 9,334 individuals enrolled in 

CATHGEN during the study period, 8,017 (86%) were successfully geocoded, 7,118 (76%) 

resided in North Carolina, and 2,318 (25%) resided in our study area of Durham, Wake, and 

Orange counties, North Carolina (Figure 1).   For participants whose addresses changed over 

time, we used the most recent address that was entered into their record before the 

catheterization. The average time at an address prior to the catheterization procedure according 

to our records was 587 days.  

We excluded 64 participants who did not self-report as European-American or African-

American. We used ArcGIS (ESRI 2011) along with roadway information from the North 

Carolina Department of Transportation to calculate the perpendicular distance from each 

participant’s address at the time of catheterization to the nearest primary or secondary roadway, 

and excluded 130 participants (5.8%  of the cohort) who resided more than two miles (3.22 km) 

from a primary or secondary roadway, leaving a study cohort of 2,124 individuals for this 

analysis (Table 1).  
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Clinical information 

Clinical information used in this study came from the HP exam at the time of the catheterization, 

medical records associated with the catheterization, and measurements made using the stored 

patient blood and plasma samples. Based on available records, approximately 82% of individuals 

approached to be in the CATHGEN biorepository consented, and no patients were excluded due 

to age, race, or sex. The CADindex is an ordinal measure that indexes the future probability of a 

future adverse cardiovascular event based on measurements of coronary atherosclerosis made 

during the cardiac catheterization procedure (Wang et al. 2007). By defining coronary artery 

disease (CAD) as a CADindex > 23 (Wang et al. 2007), we determined that 42% of our 

population has CAD. All of the clinical variables, including associated lab measures for FPG, 

LDL-C, HDL-C, TG, and total cholesterol (TC), were collected at the time of catheterization. 

The HP exam was a standard exam provided to all patients with no additional questions based on 

the individual’s consent to participate in CATHGEN. All blood draws for lab measures, 

including FGP, were done immediately prior to the catheterization procedure, thus there was no 

delay between collection of data based on the HP exam and lab values. We use two binary 

measures of diabetes. One measure was defined as an indication of either type I or type II 

diabetes on the HP exam. This HP exam annotation would have been made by the attending 

physician administering the exam, and we refer to this measure as diabetes (HP). The second 

measure was based on the patient’s FPG, with diabetes being defined as a fasting plasma glucose 

≥126 mg/dL (ADA 2008). We refer to this measure as diabetes (FPG). There was strong 

concordance between these two measures with 80% (1,709/2,124) of individuals concordant 

diabetes status according to the two measures, 1,373 positive and 336 negative. There were 145 

diabetes (FPG) positive individuals not recorded as having diabetes according to diabetes (HP), 
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and 270 individuals indicated with a positive indication for diabetes (HP) did not have diabetes 

as determined by their FPG. We additionally performed stratified analyses restricting to diabetic 

individuals (as determined by FPG) as these individuals may already have impaired glucose 

metabolism and thus be susceptible to further metabolic dysfunction as a result of air pollution 

exposure. Also to align with previous studies that mostly centered on type II diabetes, we 

performed logistic regression analyses restricting diabetes cases to individuals with reported type 

II diabetes according to their HP exam (N=573). Insulin was measured via mass-spectroscopy on 

a blood sample taken during the catheterization (Shah et al. 2010a), and insulin resistance 

(HOMA-IR) was calculated via the homeostatic model assessment method (Levy et al. 1998; 

Matthews et al. 1985), as (Insulin*FPG)/405. Hyperlipidemia was defined as a previous 

diagnosis or treatment for hypercholesterolemia based on information taken from the medical 

record. We separated the outcomes into those related to glucose control (diabetes, FPG, HOMA-

IR) and those related to lipid metabolism (LDL-C, HDL-C, TG, TC, hyperlipidemia). 

Correlations between pairs of continuous outcomes that include one glucose control outcome and 

one lipid metabolism outcome ranged from –0.15 (for HOMA-IR and HDL-C) to 0.31 (for 

HOMA-IR and TG) (Supplemental Material, Table S1.) 

Models incorporating these outcomes were adjusted for race (African-American or European-

American), sex, body mass index (based on height and weight at the HP examination), smoking 

status (positive or negative), and median home value in the participant’s census block (as a proxy 

for SES). Smoking status was defined by the Duke Institute for Clinical Cardiovascular Care as 

positive if participants smoked ≥ 10 cigarettes per day currently or had quit smoking ≥ 10 

cigarettes per day within the past 5 years because of their cardiovascular disease, or as negative 
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otherwise. Median home value was determined using 2000 Census data for patients enrolled 

before 7/2/2005 (49.7% of participants) and using 2010 census data otherwise.     

Indexing of traffic-related air pollution 

We used the 2010 Topologically Integrated Geographic Encoding and Referencing North 

Carolina Primary and Secondary Roads State-based shapefile (4th quarter release) as our 

reference dataset for the North Carolina roadway network. This file is compatible with the 

ArcGIS® software suite (ESRI 2011), and was in the same geospatial reference frame as the 

geocoding performed by the Children’s Environmental Health Initiative. The roadway network 

used for analysis was updated to the most current version (2010 4th quarter release) as of the 

initiation of analysis  to incorporate the most precise exposure information. Primary and 

secondary roads were classified by the North Carolina Department of Transportation (NCDOT 

2015) using criteria consistent with the Master Address File/Topologically Integrated 

Geographic Encoding and Referencing Feature Class Code definitions used by the United States 

Census (US Census Bureau 2013). Specifically, primary roads are divided limited-access 

highways with interchanges, and secondary roads are main inter- and intra-city arteries with 

multiple lanes of traffic that usually have at-grade intersections with other roads and driveways, 

including those of residential housing.   

We used the inverse natural logarithm of the minimum perpendicular distance from the 

participant’s residence to a primary or secondary roadway as one of our indices of TRAP. The 

inverse logarithm transform was applied because it reflects the functional form of the relation 

between distance to roadways and the concentration of particulate air pollution (Hagler et al. 

2009). Exploratory analysis of associations between the outcomes and roadway proximity 
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modeled using thin-plate smoothing splines implemented in the mgcv package (Wood 2003) in 

the R statistical programming language (R 2009) confirmed that the inverse logarithm transform 

linearized the exposure-response relationship (see Supplemental Material, Figure S1 for the 

association with FPG). 

Traffic exposure zones 

In a study of wheezing in infants geographic zones defined by traffic types yielded positive 

associations (Ryan et al. 2005). For Durham, Wake, and Orange counties, we used six mutually 

exclusive but non-contiguous traffic exposure zones (TEZs) which categorize exposure to traffic-

related air pollution as described in (Mukerjee et al. 2015). The TEZs utilized were: high volume 

traffic with regular congestion-related delays (TEZ 6), high volume (>40,000 vehicles/day) 

traffic with smooth flow (TEZ 5), mass transit routes (TEZ 4), high-traffic urbanized areas with 

signal light density (TEZ 3), urbanized areas (TEZ 2), and the remainder of the study area (TEZ 

1). A 1-km buffer around the Raleigh-Durham airport was excluded from the study.  

As detailed in (Mukerjee et al. 2015), TEZs 4, 5, and 6 were constructed using traffic model data 

supplied by the Institute for Transportation Research and Education of North Carolina State 

University (http://www.itre.ncsu.edu/). TEZ 6 included areas within 200 m of road segments 

with high volume traffic (>40,000 vehicles/day) and congestion-related delays of ≥ 35% during 

morning peak traffic (as estimated on a typical day in the Fall or Spring of 2005). TEZ 5 

included areas within 200 m of road segments with high volume traffic and smooth flow, and 

TEZ 4 included areas within 200 m of transit routes for the cities of Chapel Hill, Raleigh, and 

Durham, including transit routes for the University of North Carolina at Chapel Hill and North 

Carolina State University in Raleigh. TEZ 3 included areas with > 3 traffic lights per mile (high 
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signal light density zones). TEZ 2 included urbanized areas, as defined by the 2000 Census, and 

all areas not included in one of the other zones were classified as TEZ 1, the reference zone for 

all analyses. The final map of TEZs was created by first defining the study area (set as TEZ 1 by 

default), then overlaying urbanized areas (TEZ 2), then all areas classified as having high signal 

light density (TEZ 3), and so on through TEZ 6. CATHGEN participants were classified 

according to the highest zone that contained their geocoded address (Figure 1).  

Statistical methods 

We used R v2.10.1 (R 2009) for all analyses. Generalized additive models as implemented in the 

mgcv package (Wood 2008) were used to estimate associations of  our two TRAP proxies with 

metabolic outcomes. Generalized additive models allow for more complete model diagnostics 

than traditional linear models. Also as linear models are a special subset of generalized additive 

models, generalized additive models are appropriate even in the event that no smoothed 

relationships are necessary.  

The outcomes analyzed for association with our proxies for TRAP were FPG, diabetes (HP), 

diabetes (FPG), HOMA-IR, hyperlipidemia, LDL-C, HDL-C, TC, and TG. The risks of the 

binary outcomes (diabetes (HP), diabetes (FPG), and hyperlipidemia) were estimated using a 

logistic model with a quasi-binomial transformation. The quasi-binomial transformation allows 

for over-dispersion and can thus provide more accurate and stable model estimates.  

All models were adjusted for race (African-American or European-American), sex, body mass 

index (continuous), smoking status (positive or negative, as previously defined), and median 

home value (census block-level, continuous). We did not adjust for age at catheterization 

because it is a potential causal intermediate between TRAP exposure and the outcomes of 
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interest, since cardiovascular effects of TRAP may reduce the age at which CATHGEN 

participants present for catheterization and are enrolled into the cohort. Similarly, we did not 

adjust for clinical variables such as hypertension and extent of cardiovascular disease because 

they also may be causal intermediates between TRAP exposure and the metabolic outcomes. 

Associations between TRAP exposure and the outcomes were modeled using two proxy 

measures of exposure, distance from the participant’s residence to the nearest primary or 

secondary roadway, and the traffic exposure zone of each participant’s residence. For the 

distance to primary or secondary roadways exposure, the inverse-logarithm transform was scaled 

to the inter-quartile range (IQR, 990 m), and results are expressed in terms of the regression 

coefficient (β) for continuous outcomes or the odds ratio (OR) for binary outcomes. Since the βs 

and ORs are presented on the scale of an IQR increase in the transformed distance to roadway 

variable, the represent a proportional change on the untransformed scale.  

Models to estimate associations with the TEZs included five indicator variables for the six TEZ 

areas, with TEZ 1 used as the reference group for all comparisons. Given the small sample sizes 

in TEZs 5 and 6 they were combined into one TEZ (TEZ 5/6) in a secondary analysis for all 

outcomes. To test for an association with a trend across the traffic exposure zones a linear 

association with an ordinal TEZ variable was used. As with models of associations with distance 

to roadways, TEZ models were adjusted for race, sex, body mass index, smoking status, and 

median census block home value. Given their small sample sizes, TEZ 5 and TEZ 6 were 

combined into a single TEZ (TEZ 5/6) for some analyses. For the TEZ exposure, results are 

expressed in terms of the regression coefficient for continuous outcomes or odds ratio for binary 

outcomes.  
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All associations were examined for influential observations using Cook’s distance (Cook 1977), 

and any observations found to be exerting undue influence were removed. After examination 

only a single observation was removed for the outcome HOMA-IR. In addition to modeling 

associations among all participants combined we estimated associations separately for men and 

women, and for African Americans and European Americans, using stratified models. 

Results 

Observed characteristics of study population 

The study population consisted of European-American and African-American CATHGEN 

participant residing two miles (3.22 km) from a primary or secondary roadway in Durham, 

Wake, and Orange counties, NC (Table 1). The IQR for distance to a primary or secondary 

roadway among the study population was 990 m. Our study population was 40% female with an 

average age of 61 and BMI of 30 kg/m2. The study population was concentrated in TEZs 1 – 4, 

with most living in TEZ 2 (urbanized areas) (N=765).  

Glucose control and diabetes results 

An IQR decrease in the inverse-logarithm transform of distance to roadways was associated with 

an increase in FPG concentrations (β = 2.17 mg/dL; 95% CI: –0.24, 4.59; P=0.078) (Figure 2, 

Supplemental Material Table S2). This association was stronger among those with FPG ≥ 126 

mg/dL (β=7.45 mg/dL; 95% CI: 1.30, 13.6; P=0.018), among African-Americans (AA) (β=5.28 

mg/dL; 95% CI: –0.17, 10.7; P=0.058) compared with European-Americans (EA) (β=0.96 

mg/dL; 95% CI: –1.61, 3.52; P=0.47), and among women (β=5.16 mg/dL; 95% CI: 1.48, 8.84; 

P=0.006) as compared with men (β=0.14 mg/dL; 95% CI: –3.04, 3.33; P=0.930).  
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None of the individual TEZs were associated with FPG (Figure 3, Supplemental Material Table 

S3). However, associations increased monotonically as the zones increased from TEZ 3 to TEZ 6 

(trend p-value = 0.07, Figure 3). 

We did not observe an association between diabetes (HP), diabetes (FPG), or HOMA-IR and our 

TRAP exposure metrics (Figures 2 and 3; Supplemental Material, Tables S2 and S3). We 

additionally restricted our diabetes (HP) measure to those individuals diagnosed with Type II 

diabetes (N = 573), yet still did not note any associations with P < 0.05 with TRAP (data not 

shown). 

Lipid metabolism results 

Decreasing distance to roadways was not associated with hyperlipidemia in the overall cohort 

(OR=1.09; 95% CI: 0.96, 1.23; P=0.17) (Figure 2 and Supplemental Material, Table S2). 

Distance to roadways was associated with hyperlipidemia among women (OR=1.23; 95% CI: 

1.01, 1.50; P=0.042) but not men (OR = 1.01; 95% CI: 0.86, 1.18, 0.94). 

HDL-C was not associated with distance to roadways in the overall population, but associations 

indicated higher HDL-C concentrations amongst the AA as the distance to roadways decreased 

(β=2.08 mg/dL; 95% CI: –0.09, 4.24; P=0.06) as compared with EA (β = –0.09; 95% CI: –2.13, 

0.31). Residence in TEZ 5 was positively associated with HDL-C (β = 8.36 mg/dL compared 

with TEZ 1; 95% CI: –0.15, 16.9; P=0.054) (Figure 3 and Supplemental Material, Table S3). In 

the analysis of TEZ 5/6 the association remained positive while the associated confidence 

interval shrunk (β=7.36 mg/dL; 95% CI: 0.74 – 14.0, P=0.03). 
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Neither distance to roadway nor the TEZs were associated with LDL-C, TG, or TC (Figures 2 

and 3 and Supplemental Material, Tables S2 and S3.) 

Discussion 

In this study we explored the relations between traffic-related air pollution and two groups of 

metabolic risk factors for CVD, those related to glucose control (FPG, HOMA-IR, and diabetes) 

and those related to lipid metabolism (LDL-C, HDL-C, TG, TC, and hyperlipidemia). We used 

two separate indices for traffic-related air pollution: the inverse-natural logarithm of the distance 

to the nearest primary or secondary roadway (scaled to the IQR) and traffic exposure zones. 

Decreasing distance to roadways was positively associated with FPG (β = 2.17 mg/dL; 95% CI: 

–0.25, 4.58). Air pollution has been previously associated with FPG (Brook et al. 2008; Chuang 

et al. 2011; Kramer et al. 2010), and reported to be stronger among women than men (Brook et 

al. 2008; Kramer et al. 2010). We replicated this women-specific association in the CATHGEN 

cohort (β=5.16 mg/dL; 95% CI: 1.48, 8.84). 

There is currently little literature on the impact of racial/ethnic stratifications on associations 

between air pollution and metabolic outcomes. We found an association between FPG and an 

IQR decrease in distance to roadways amongst African-Americans (β=5.28 mg/dL; 95% CI: –

0.17, 10.7), but not European-Americans (β=0.96 mg/dL; 95% CI: –1.61, 3.52). To our 

knowledge this is the first report of racial differences in associations with FPG. Each of the race 

specific models was adjusted for median home value at the census tract level, and this area level 

adjustment for SES did not impact associations (data not shown). We do acknowledge that 

unaccounted for demographic variables may impact these race specific associations including 
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individual level SES metrics, and future studies should extend the demographic variables 

collected to more fully evaluate potential confounders. 

Several markers of TRAP have been associated with diabetes including: NO2 (Andersen et al. 

2012; Brook et al. 2008; Coogan et al. 2012), traffic related particulate matter (Kramer et al. 

2010), and distance to roadways (Puett et al. 2011). Often associations between traffic-related air 

pollution and diabetes are observed only amongst women (Hoek et al. 2013; Rajagopalan and 

Brook 2012). The strongest association with outcomes related to glucose control in our study 

population was between FPG and distance to roadways amongst women. We observe no strong 

differences in exposure or confounders that would yield insight into this sex-specific association. 

While there may be an underlying biological basis for this, perhaps related to sex-specific 

hormone and metabolic differences, we cannot discount that the differences may be to as yet 

unmeasured confounders including differences related to exposure to specific air pollution 

components, SES, or daily routines. 

In a series of papers exploring the metabolic consequences of air pollution exposure, researchers 

have shown that mechanisms related to glucose control are disrupted after exposure to PM2.5 

(Rajagopalan and Brook 2012; Xu et al. 2011; Zheng et al. 2013). Animals exposed to PM2.5 

experience increases in insulin resistance indicating metabolic dysfunction (Sun et al. 2009; Xu 

et al. 2011). A likely cause of this dysfunction is oxidative stress. Oxidative stress is known to 

induce dysfunction in glucose control (Rains and Jain 2011), and oxidized lipids, such as LDL, 

have been proposed as a biological marker for exposure to air pollution (Møller and Loft 2010). 

Future work should jointly examine metabolic markers and oxidative stress in human studies to 
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connect TRAP, oxidative stress, and metabolic outcomes in a way that can evaluate potentially 

causal relationships amongst these variables. 

The specificity of associations between air pollution and measures of glucose control outcomes 

requires further exploration. In 2011 Chuang et al. (Chuang et al. 2011) investigated associations 

between the annual average of several air pollution measures and cardiovascular risk factors in 

1,023 elderly individuals from Taiwan. They reported that FPG and Hemoglobin A1c were 

associated with PM2.5 and NO2. The association between distance to roadways and FPG in our 

study population is consistent with this previous study.  Longitudinal cohort studies, such as the 

Chinese Air Pollution and CardioMetabolic Disease cohort (Sun et al. 2013), that examine 

multiple primary and secondary cardiometabolic endpoints will be extremely useful in 

examining the specificity of associations between traffic-related air pollution and multiple 

cardiometabolic outcomes. 

Our lipid metabolism outcomes were LDL-C, HDL-C, TG, TC, and hyperlipidemia. Air 

pollution has been associated with oxidized LDL-C (Kelishadi et al. 2009), but in a study of 

traffic exposures there was no difference in HDL-C or LDL-C levels when the population was 

classified into low and high traffic exposure cohorts (Hoffmann et al. 2006).  In our analyses 

distance to roadways was associated with hyperlipidemia among women (OR=1.23, 95% CI: 

1.01 – 1.50), and residence in TEZ 5/6 was associated with increased HDL-C (β=7.36, 95% CI: 

0.74 – 14.0), an association that needs further exploration as HDL is often thought of as a 

protective factor for CVD. Again we suggest that future studies work on jointly measuring 

TRAP exposure, oxidative stress markers, and metabolic outcomes in order to establish causal 

relationships between these variables. 
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The aforementioned study of cardiovascular risk factors amongst the elderly in Taiwan (Chuang 

et al. 2011) analyzed the lipid metabolism related outcomes, HDL-C, TC, and TG. Similar to our 

associations they noted specific associations between these outcomes and long-term air pollution 

exposure. However in their analyses only TC showed associations with PM2.5 and NO2, whereas 

in our analyses HDL-C was positively associated with distance to roadways in our AA 

population. In a separate study of oxidized LDL in 79 diabetic individuals, a doubling in the 

distance to major roadways was associated with a decrease in oxidized LDL (Jacobs et al. 2011). 

Given the number of studies associating long-term air pollution exposure with lipid metabolism, 

further research should attempt to establish the specificity of these associations for specific 

sources and components of air pollution, as well as confirm their robustness using larger cohorts. 

Additionally, more work should to be done to establish the independence of, or relationship 

between, associations of lipid metabolism and glucose control outcomes with long-term air 

pollution exposures. 

Strengths and limitations 

This study has several strengths and limitations. One limitation is that we used indirect measures 

of traffic-related air pollution, whereas alternative measures, such as black carbon, may more 

precisely estimate the exposure. Additionally as we used distance to roadways as our measure we 

cannot discount the potential effect of traffic noise on our associations, particularly as other 

studies have noted an association between diabetes and traffic noise (Sørensen et al. 2013). 

Despite this limitation, distance to roadway has been shown to be highly correlated with 

particulate pollution from major roadways in North Carolina (Hagler et al. 2009). Another 

limitation is that the CATHGEN cohort is not a representative sample of the general population. 

As a cohort of outpatients undergoing outpatient cardiac catheterization procedures the 
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CATHGEN cohort has a CAD prevalence of 42% which is higher than the estimated 6.7% 

national prevalence in 2006 (the midpoint year of the CATHGEN sample) (CDC 2011). 

However populations with CAD have been identified as particularly at-risk for complications 

resulting from air pollution exposure and thus are worthy of separate study (Brook et al. 2010).  

The primary strength of this study comes from the depth of clinical information available in the 

CATHGEN cohort, allowing us to examine multiple metabolic outcomes while adjusting for 

relevant clinical and socioeconomic measures. In addition all of these risk factors were assessed 

via physician administered examinations or medical labs immediately prior to the catheterization 

procedure, reducing error in the measurements. An additional strength is the size of the 

CATHGEN cohort. Even after restricting to individuals residing in Durham, Wake, and Orange 

counties NC, there were sufficient observations to examine sub-cohorts and address race and sex 

specific associations. Our use of the traffic exposure zones allowed us to assess potentially 

traffic-pattern specific sources of traffic-related air pollution and uncover associations that would 

have otherwise been missed.   

Conclusion 

We have shown that distance to major roadways and residence in traffic exposure zones is 

associated metabolic outcomes associated with CVD including FPG and HDL-C. Traffic 

exposure zones created to index both source and severity of TRAP on an ordinal scale added 

relevant information to associations observed using distance to roadways as an index for TRAP. 

Associations with FPG were stronger in women, in line with previously published sex-specific 

associations, and we observed a novel association between distance to roadways and FPG 

amongst African-Americans. Associations found in large retrospective cohorts such as 
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CATHGEN lay the foundation for future exposure studies in prospective cohorts such as the 

Chinese Air Pollution and CardioMetabolic Disease cohort (Sun et al. 2013), as well as genetic 

and metabolomic studies to fully understand the impact of traffic-related air pollution.  
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Table 1. Demographic and clinical variables   for   the study cohort and race/sex stratified sub-

cohorts used for analysis.  

Clinical Covariates All Male Female AA EA 
N 2,124 1,274 850 625 1,499 

Sex (% Female) 40.0% 0.0% 100.0% 50.4% 35.7% 
Race (% EA) 70.5% 75.6% 62.9% 0.0% 100.0% 

Age (y) 61.3 + 12.2 60.7 + 11.9 62.3 + 12.6 57.4 + 11.6 63.0 + 12.0 
BMI (kg/m2) 30.3 + 7.36 29.9 + 6.60 31.0 + 8.33 32.6 + 8.24 29.4 + 6.75 

Ejection Fraction (%) 57.9 + 12.8 56.4 + 13.0 60.0 + 12.3 56.3 + 13.7 58.5 + 12.4 
Fasting Plasma Glucose 

(mg/dL) 
117 + 48.1 119 + 49.8 114 + 45.3 124 + 58.4 114 + 42.7 

Total Cholesterol 
(mg/dL) 

183 + 47.5 179 + 46.9 190 + 47.8 185 + 48.7 182 + 47.0 

Triglycerides (mg/dL) 166 + 159 178 + 187 146 + 97.2 133 + 85.8 180 + 181 
LDL (mg/dL) 104 + 40.3 102 + 38.7 107 + 42.7 108 + 41.8 102 + 39.5 
HDL (mg/dL) 47.5 + 17.1 43.7 + 14.7 53.6 + 18.9 49.1 + 17.5 46.7 + 16.8 

Hyperlipidemia 60.5% 64.1% 55.2% 57.1% 62.0% 
Hypertension 69.3% 67.9% 71.4% 81.3% 64.3% 

CAD 41.7% 50.3% 28.8% 31.4% 46.0% 
Diabetes (HP) 28.5% 29.8% 26.6% 40.0% 23.7% 

Smoking Status (% 
Smokers) 

44.6% 50.0% 36.5% 43.0% 45.2% 

HOMA-IR 3.97 + 5.84 3.93 + 6.35 4.01 + 5.08 5.13 + 7.88 3.67 + 4.34 
SES – median home 

value ($1000s) 
179 + 93.8 185 + 94.2 171 + 92.5 129 + 68.6 200 + 95.0 

Distance to Roadways 
(m) 

898 + 747 918 + 759 868 + 729 784 + 663 946 + 775 

Distance to Roadways 
(m) - IQR 

990 1031 929 895 1020 

TEZ 1 (%) 19.2% 20.3% 17.4% 10.1% 23.0% 
TEZ 2 (%) 36.0% 38.3% 32.6% 24.0% 41.0% 
TEZ 3 (%) 15.0% 13.7% 16.8% 15.2% 14.9% 
TEZ 4 (%) 27.4% 25.1% 30.7% 47.0% 19.2% 
TEZ 5 (%) 1.5% 1.4% 1.7% 2.4% 1.1% 
TEZ 6 (%) 1.0% 1.1% 0.8% 1.3% 0.9% 

Abbreviations: AA=African-Americans, BMI = body mass index, CAD = coronary artery disease, 

EA=European-Americans, HDL = high-density lipoprotein cholesterol, HOMA-IR = Homeostatic model 

assessment method – Insulin Resistance, HP = health and physical examination, IQR = inter-quartile 

range, LDL = low-density lipoprotein cholesterol, SES = socio-economic status, TEZ = traffic exposure 

zone. Mean + SD for continuous variables, percentage for categorical variables. SES assessed via the 

median home value at the census block level. 
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Figure Legends 

Figure 1. CATHGEN Participants in Study Area. The distribution of CATHGEN participants 

within the study area of Durham, Wake, and Orange counties, NC is given in the figure below. 

The participant locations are overlaid on a map of the primary and secondary roadway network 

as well as the traffic exposure zones. The participant locations have been randomized on a small 

scale to protect confidential patient information while preserving the overall spatial distribution. 

Figure 2. Association of Glucose Control and Lipid Metabolism Outcomes with Distance to 

Roadways. Forrest plots of the association between distance to roadways and out metabolic 

outcomes. Associations are presented as an effect estimate (Beta) for the continuous outcomes 

and as an odds ratio (OR) for the binary outcomes. Associations were scaled so that a 1-unit 

change corresponds to the inter-quartile range (990m). Error bars indicate 95% CI. Models were 

adjusted for race, sex, smoking status, socio-economic status (median house value at census 

block level), and BMI. Complete numeric data are provided in Supplemental Material, Table S2 

Figure 3. Association of Glucose Control and Lipid Metabolism Outcomes with Traffic 

Exposure Zones. Forrest plots of the association between traffic exposure zones (TEZ) and out 

metabolic outcomes. Associations are presented as an effect estimate (Beta) for the continuous 

outcomes and as an odds ratio (OR) for the binary outcomes. Associations with individual TEZ 

are presented as compared to the baseline zone (TEZ 1). For the TEZ Trend association the 

traffic exposure zones were treated as a single ordinal variable. Error bars indicate 95% CI. 

Models were adjusted for race, sex, smoking status, socio-economic status (median home value 

at census block level), and BMI. Complete numeric data are provided in Supplemental Material, 

Table S3. 
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Figure 1. 
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Figure 2. 
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